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We discuss the problem of what phases should be attributed to the Bloch functions in order
to obtain Wannier functions with minimal widths. An exact solution to this problem is found by
means of the k'E perturbation formalism. We also consider localized crystal functions of a
more general kind. These functions are found to obey a Schrddinger equation in reciprocal
space, and may have some important assets when compared to the Wannier functions.

I. INTRODUCTION

Whenever we use Wannier functions
a,(F)= [d% e ® R, (&, F)

in the solution of quantum-mechanical problems in
crystals, we are faced with the persistent prob-
lem of what phases should be attributed to the nth-
band Bloch functions b, (K, T ) associated with the
wave vectors K. The Wannier functions become
an important complete set of basis functions when
one deals with sharply localized potentials due to
defects in crystals. For instance, they have been
used in connection with the Koster-Slater! scheme
to deal with highly localized potentials such as those
encountered in the problem of magnetic impurities
in metals,? vacancies in semiconductors,®* and
scattering of Bloch waves by crystal defects.® The
phase of b, (K,T) in Eq. (1.1) should be chosen so
that a, (¥ ) is reasonably well localized. Indeed,
if the perturbing potential is effective only in the
neighborhood of a given crystal cell, we want to
be certain that the influence of the perturbation on
a Wannier function of a distant cell is vanishingly
small, Thus, a minimal width for the Wannier
function becomes a reasonable criterion for the
choice of the phases of the Bloch functions.

By changing the phase of the Bloch functions,
we can vary the width of the Wannier function over
very large limits, As Kohn and Michaelson have
shown,® it is always possible to choose the phases
so that the Wannier function has a finite width.”
On the other hand, if the phase is a nonanalytic
function of K, it can be rightly expected that the
width of the Wannier function will become infinite.
In this latter case, the tail would extend through
the whole crystal and the Wannier functions would
be utterly unsuitable in the handling of sharp per-
turbing potentials. It hasbeen shown? that the find-
ing of proper phases for the Bloch functions is a

(1.1)
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nontrivial one. Indeed, a wrong choice was shown
to lead to very unsatisfying results in the case of
vacancies in PbTe.*

In this paper we intend to show how to choose
the phases of the Bloch functions so as to obtain
Wannier functions with minimal widths, and to ob-
tain an expression for the minimal width that can
be attained. The Wannier functions are not the
only localized functions of interest in crystals.
For instance, Anderson® has recently shown how
to obtain a particular type of localized function in-
volving morethan one band. We address ourselves
to the problem of generalizing beyond the scope of
the Wannier functions in another section of the
present work,

II. POINT-BY-POINT BLOCH FUNCTIONS

A possible way to relate the phases of the Bloch
functions throughout the reciprocal k space is by
means of the k - p perturbation.’® Consider a point
K in the reciprocal space and assume that the en-
ergy bands E, (k) and the Bloch functions b, (K, )
are known, At a neighboring point K +8, the Bloch
functions are

bk +8,F)=e®* 2 c, (&,35)0,&,F), (2.1)
where, if § is small,
Coa( 5)=1+0G?),
and, for ! #mn,
C,.,,(E,g):lf LIRS TN (35 R

m E,(k) - E,(k)

Therefore, starting at a certain point K, from
Eqgs. (2.1) and (2. 2), we obtain the Bloch functions
at a neighboring point K;+8. Repeating this pro-
cedure for the latter point, we find the Bloch func-
tions atapoint Ky +5 +37. In this way, it is possi-
ble to define the Bloch functions with unequivocally
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2 WANNIER FUNCTIONS AND THE PHASES"

determined phases throughout the whole reciprocal
space.!® For the Bloch functions so defined, we
reserve the name of point-by-point (PP) Bloch
functions, because we are using a K - p perturba-
tion in a step-by-step procedure, thus relating the
phases of neighboring Bloch functions through Eqgs.
(2.1) and (2. 2). As will be shown in Sec. III, the
PP Bloch functions have some features which make
them important. It turns out that these are the
Bloch functions which give a minimal width to the
Wannier function. In an actual calculation, though,
a PPK . p perturbation is not practical, and this
problem is handled in Sec. V.

The PP Bloch functions are not necessarily peri-
odic in the reciprocal space. Letting g be a re-
ciprocal-lattice vector, we have

bR +&, T)=e® Dy (& F),

where 6 (g, K) is a phase which is certainly depen-
dent on g. On the other hand, a simple argument
proves that § cannot depend on K. Indeed, by a
PPK - p perturbation we can move from K, to &,
+g either along the path k,~ K,~E,+¢ or along the
path K,~K,+g8 —K,+g. From the first path, we
obtain the relation

b,&y+8, )= @ EDp (k) T), (2.3)

while, in the second path, at K, +g, we obtain
bR, +E, T)=e®E0p & 7).

When using Eqs. (2.1) and (2. 2) from &k, +¢ to K,
+g, we reproduce the motion from K, to k,. There-
fore,

b, K, +8, D) =eEE0p (&, 7). (2.4)

A comparison between Eqs. (2. 3) and (2. 4) reveals
that 9 is independent of K. Next, we compare the
straight motion from k to K +&, +§, with the motion
along the path kK — K +g,-K +&,+8,. We reach the
conclusion that

9(51 +§2) = e(él) + 9(&2) .
Then, we are led to

b, +8, F) =B p (K, T), (2.5)

where ﬁ,, is a lattice vector and can be chosen
within the Wigner-Seitz cell. If the crystal has a
very low symmetry, it may happen that R’,, depends
on the band index =,

Observe, that the phases of the PP Bloch func-
tions depend on the choice made for the origin of
the coordinate system, If we translate the system
of coordinates to the point ﬁo, instead of ¢ '* in
Eq. (2.1), we would have e®®* -R0) and the PP
Bloch functions would gain an extra phase:

e iF : ﬁ“. In particular, if the origin R, is placed
at R, , the PP Bloch functions become pevriodic in
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the reciprocal space.

Next, suppose we have a group of rotations «
around the origin which leaves the crystal invari-
ant. Then, b,(K, aF) and b, (a™'Kk, T) may differ at
most by a phase factor. Thus,

ab (ak,7)= b, (ak, aF)=e@Pp & 7).
But from Eq. (2.1), we see that

alb, (@K +0a8,F)=e®*Pp €157 .
So the phase 6 does not depend on K and from

b,(aBE, afT)=elo®+ 0B & T)

we discover that e¢?® are a unidimensional repre-
sentation of the rotation group. On the other hand,
for free electrons we have e'®¢® =1, Therefore,

if we think of the Bloch functions as being obtained
from plane waves by turning on the potential per-
turbation, we conclude that

b,(ak,aF)=0b,K,7) . (2.8)

Finally, consider that
ab,® +g,P)=afe® " *p, & 7)}
=e B p (0K, F)=b,(aK +0f, 7)
—piot" By b,(ak,T),
and, thus,
aR, =R, + (lattice vector),

and if the crystal symmetry around the origin is
higher than around any other point in the Wigner-
Seitz cell and the space inversion is included inthe
point group, then R',, =0, and the PP Bloch functions
are periodic in the reciprocal space. This argu-
ment permits us to choose the origin of the coordi-
nate system from symmetry considerations. In
many cases the choice is unique. In a case such
as that of the NaCl structure, though, the Na and
Cl positions are completely equivalent., For some
bands R',, will refer to the Na position while for
others it will refer to a Cl position,

II. LOCALIZED CRYSTAL FUNCTIONS
WITH MINIMAL WIDTH

In Sec. IV, we will find the Wannier functions

a0, @) -0V [, dre® - Ry @), (3.1)

which have minimal width, In Eq. (3.1) we let R
be a lattice vector and b,,(k, T) be the PP Bloch func-
tions of the nth band, The origin of the coordinate
system is chosen so the PP functions are periodic
in the reciprocal space. € is the volume of the
Brillouin zone and the integration in Eq. (3.1) is
carried out within the zone, Our aim will be to
find the periodic phase (k) which leads to the
most concentrated Wannier function,
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In the present section, we make the problem
more general by studying the functions

z,(®)= [, &S, &)0,[KT), (3.2)

where f, (k) is chosen periodic in the reciprocal
space. In particular, we want £,(k) such that
Z,,(F) has minimal width. It is convenient to nor-

malize f,(K) by

L, @A E) f®)=1,
which assures that Z, (r) is itself normalized,
Then, we define the width of Z, () around a given
center R, by

W= [d*Z, ) F -R)?*Z, () .
The width can also be obtained from the second
derivative of

N@)=[ d% z,[{)e® * ¢ - Boz (7)
with respect to §, in the limiting case §—-0. Ac-
cording to Eq. (3.2),

NG)=[ d%d%’ d f,®")' f,®)e " " Fo

x b, &, F)te™ b (7). (3.5)

Because of the periodicity of f,(K’) and 8,(k’, ¥) inthe
reciprocal space, the integration in k’ may be car-
ried out inside a volume which is the Brillouin zone
displaced by §. Then, the integration in ¥ re-
quires that

k' =k +8,
and from Eqgs. (2. 1) and (3. 5) we obtain

N@)= [ d%C,, &, 3)f,E+3)

(3.3)

(3.4)

X f, (R)e~® Ry (3.8)

Taking the Laplacian of Eq, (3. 6) with respect to
the coordinates 8, we arrive at the following ex-
pression for the width:

W= [ d% (= V2Cpn — 1, VEfT

B

+ ﬁgfnrfn +i2fn§0' afypf) . (3- 7)

The notation in Eq. (3. 7) has been shortened on
purpose, but we remark that the differential oper-
ators ¥V and V2 when applied to C,, (&, 3) act on the
coordinate § and, in a later step, the limit § -0
is taken, When applied to £, (K +8), these differ-
ential operators act on the coordinate kK because

lim [Vs £,(&+8)] = ¥; £, (),

and this is also true for the operator V2, When ob-
taining Eq. (3.7) we made use of the fact that VC,,,
is zero. Indeed, up to the second order in 8,

C,, (k, 5) may be obtained from Eq. (2.2) and from

the fact that the left-hand side of Eq. (2. 1) is nor-
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malized;
Copn &, ) ={1- 2, | (it /m)s - B, )2
x [E, k) - E,&)]-3 V2, (3.8)
where
By, ®)=(0,(K,7) |5 [0, (&,T)) .

Thus, VC,,=0.

Now, we perform a variation &f f, on W in order
to make the width extremal, With the normaliza-
tion given by Eq. (3. 3), we arrive at

- vz.fn(ﬁ) - (-V. zcn,n )fn (E) + E(2).fn (E)

(3.9)

-i 2R, V£,®) =wf, &), (3.10)

where w is a Lagrange multiplier. To obtain Eq.
(3.10), some integrations by parts had to bre per-
formed, the surface terms vanishing because

7. (K) is periodic in the K space. Finally, making

fo®)=g,®) e R, (3.11)
we obtain

- V2g, (&) +(- V2C,p,0 )2, @) =0g, &),  (3.12)
where, from Eq. (3.8), (3.13)

- §2C’m’ = Z;,( ’ % ﬁ,.n(ﬁ) ,/[E,,(E) - Ez(E)]>z ’

which is positive in the whole reciprocal space,.

Equation (3. 12) is a Schrddinger equation for a
periodic positive potential - V2C, , in the K space.
The primitive cell is the Brillouin zone, while the
eigenvalue is the Lagrange multiplier w, An eigen-
function of Eq. (3.12) is associated with the quan-
tum numbers R,, R,, and R,, coordinates of a
point B in the Wigner-Seitz cell, much in the same
way as an eigenfunction of the crystal Schrédinger
equation is associated with a wave vector K in the
Brillouin zone, Since f,(K) must be periodic in K
space, from Eq. (3.11) we conclude that

R=R,.

Therefore, the vector R associated with a solution
of Eq. (3.12) is simply the center of the localized
function Z,(¥).
Now, if Eq. (3.10) is used in Eq. (3.7) we find
that
W=w. (3.14)

Therefore, for each band, the set of localized
functions Z, (¥) constructed as in Eq. (3. 2), and
with extremal width, form a discrete set of func-
tions corresponding to the eigenvalues w of the
Schrédinger equation (3. 12) inthe reciprocal space.
The width of Z, (¥) equals the eigenvalue of Eq.
(3.12), while its center is the wave vector R asso-
ciated with the solution of Eq. (3.12).
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IV. WANNIER FUNCTIONS WITH MINIMAL WIDTHS

Equation (3. 1) is a special case of Eq. (3. 2),
where

()= QY2 expli n,(K) - ik - R] .

Therefore, all the algebraic development of Sec.
III that leads to Eq. (3.7) is still valid. The width
of the Wannier function then becomes

1
W-Q

+(R-Rp)P+2V1, - (Ry-R)+ iV, ]

- 5 - TR, s ON P R-BP 1)

. d% [-V2C,,, +(Vx,)?
Z

because X, is periodic in k. Equation (4.1) shows
that the Wannier functions with minimal widths are
such, that

)\n (E)=0, ﬁozﬁ,
and
W= [d%(-¥2C,,)/9Q, (4.2)

i.e., it is constructed out of the PP Bloch func-
tions and it is centered at a point which differs
from the origin by a lattice translation,

At this point, we return to what we have said in
the Introduction in connection with the problem of
finding the energy levels due to sharply localized-
defect potentials. In that problem it is certainly
convenient to have a set of crystal functions with
small widths, The set of Wannier functions with
minimal width and localized at the different lattice
points is certainly more convenient than the set of
solutions to Eq. (38.12), in that the Wannier func-
tions may be constructed without solving an extra
Schrddinger equation. Because of Eq. (2.6), the
symmetry of a localized function such as Eq. (3. 2)
is determined by the modulating function f,(K). I
the case of a Wannier function centered at the ori-
gln,

E=1/9,

so that a Wannier function has the full symmetry
of the point group, and therefore, an s-like behav-
ior., On the other hand, it is always possible to
find solutions to Eq. (3.12) with any symmetry
compatible with the point group, and centered at
any point in the Wigner-Seitz cell. Thus, when
compared to the Wannier functions, the solutions
of Eq. (3.12) have some assets which may turn
out to be very convenient in some specific prob-
lems.

V. SINGLE-POINT BLOCH FUNCTIONS

The crystal functions with minimal width were
defined in terms of the PP Bloch functions, We
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recall here that the PP Bloch functions are the
ones whose phases are determined by a k - p per-
turbation expansion from point to point throughout
the Brillouin zone., In an actual band calculation,
however, one never makes a PP K - p perturba-
tion, but expands all the Bloch functions in terms
of those of a single point K, (in general, the point
of highest symmetry in the zone). This latter pro-
cedure is indeed one of the most promising meth-
ods of band calculation and has been shown re-
markably successful both in Ge and Si!! as in the
case of PbTe.* This latter method leads to Bloch
functions which will be named SP (K * p perturba-
tion to a single point), and which differ from the
PP functions by a phase u,(k). The purpose of
this section will be to determine this phase. In
doing so, we have put in practical terms the prob-
lem of determining the localized crystal functions
with minimal widths.

Let C,,,; (k) be the coefficients of the expansion
of the PP Bloch functions b,(k, T ) in terms of the
Kohn- Luttinger functions e = ¥0* ¥p (£, ¥) con-
structed from the Bloch functions at K,. That is,

b, &, F)=e'® -3 ¢ @), F) . (5.1)
An analogous expression for the PP Bloch functions
at kK +§ can be written. But, as the PP Bloch
functions at kK and kK +3 are related by means of
the k - p perturbation, we obtain

Con& +8)=[1-5, |3 - F,..®)|2%2C,, @

ST @ T, ENC, €), (5.2)
where
'fq,,,(ﬁ)=(bq(E,F)Hfb,,(E,'f))
$02 /), (B)
“ER-E®] (5.3)

and where P, (k) is defined by Eq. (3.9).

First, let b,(K,¥) and C, ,(K) be the SP Bloch
functions at Kk and the coefficients of their expan-
sion in terms of the Kohn-Luttinger functions of
K,, respectively. Since

b, ([, F)=en®h & F), (5.4)
we obtain
C, B =etn®C, (k) , (5.5)

for all /. The phase of the coefficients C,, ,(K) may
be fixed in the fclowing way., Choose a reference
state at K,, by(K,, ¥), and require that

C,,x() be real and continuous in K. (5.6)

The choice of N is arbitrary, one possibility being
N=n. Then, from Eq. (5.5), we obtain the follow-
ing expression:
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Po N(E+ 3 )ei:u,,(ﬁ+ 3) - up(N
ny

e B[-T, (& F,, @2

LT B, @) E) 5.7)

where ¥, (k) is analogous to ¥,,(K) only in that it
is defined in terms of the SP Bloch functions.
Dividing both sides of Eq. (5.7) by § and passing
to the limit § -0, we obtain, for the imaginary
part of the resulting expression, the following re-
lation:

14
3“;1 (E) == [én,l‘l»(ﬁ)]‘1 Re[ ZI :flm (E) CZ,N(E)] .
(5.8)
Equation (5, 8) can be integrated to yield the
phases p, (K) to which one should multiply the SP
Bloch functions in order to obtain the PP functions.
It is remarkable that in the special case of a weak
spin-orbit coupling in a crystal with inversion
symmetry, the coefficients C, ,(kK) are all real be-
cause of time reversibility. Then, the matrix ele-
ments of p are also real, which makes the right-
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hand side of Eq. (5.8) null. Ix this case, the SP
and the PP Bloch functions coincide.

VI. SUMMARY

In this paper we have solved the problem of find-
ing Wannier functions with minimal widths., These
Wannier functions were defined in terms of Bloch
functions whose phases were determined by a PP
k- 5 perturbation-expansion technique. The mini-
mal Wannier functions are centered at the sym-
metry points and are associated with the invariant
representation of the point group. The phases of
the PP Bloch functions with respect to the Bloch
functions coming from a K - § perturbation to a
single point in the zone were also determined.

The problem of finding crystal functions with
minimal widths was generalized beyond the strict
scope of the Wannier functions. These generalized
minimal functions turned out to satisfy a Schro-
dinger equation in the reciprocal space. Contrary
to the Wannier functions, these generalized func-
tions may belong to any irreducible representation
of the point group and can be centered at any point
in the Wigner -Seitz cell.
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